

Alpha Magnetic Spectrometer – 02 Phase II Ground Safety Review

Ground Operations

September, 2008

Timothy J. Urban / ESCG / Barrios Technology

Outline

- Operations Timeline
- Operations Flow Diagram
- Ground Operations
 - Off-Line, Non-Payload Tests
 - Off-Line Payload Processing: SSPF
 - On-Line Payload Processing:
 - SSPF
 - Canister Ops
 - Pad / PCR Ops
 - Abort
- Launch Commit and Go / No Go Criteria

Alpha Magnetic Spectrometer – 02 Ground Operations - Timeline

Parallel, Off-Line, Non-Payload Tests:

- POPIT2
 - MLP Launch Commit Criteria Tests
 - Flight Specific MLP Data Transmission Tests
- OPF Orbiter Sill-Side Test

September, 2008

Alpha Magnetic Spectrometer – 02 Ground Operations

Timothy. J. Urban / ESCG

Parallel Off-Line Non-Payload Tests

- A. STS Pre-Mate Verifications
- To be worked in parallel with payload processing
- Utilize flight spare Class I stand-alone components:
 - Pad Operations Preliminary Interface Test (POPIT) 2
 - STS Interface Test (SIT) {OPF Orbiter Sill-Side Test}

Blue Dashed Line on Flow Diagram

Parallel Off-Line Non-Payload Tests

- 1. POPIT-2: Empty, flight specific MLP at the pad
 - a. Repeat POPIT for 1553 & RS-422 using J-Crate Flight Spare Unit
 - b. Perform LCC and KSC POCC Verifications (1553 & RS-422)
 - i. P/L Critical Health Data → Launch Control Center P/L Console
 - ii. P/L ↔ KSC POCC
 - c. T0 P/L Power Services: 120VDC and 110 VAC
 - i. Verify pin-out from MLP Room 10 A to T0
 - ii. Power out and abort simulations verifying monitor and control of power services

Parallel Off-Line Non-Payload Tests

- 2. Pin-out verifications prior to STS Interface Test (SIT)
- 3. STS Interface Test (SIT) Interface Verification Testing (IVT)
 - a. J-Crate (P/L Computer) ↔ DDRS-02 (P/L AFD Data Recorder)
 - b. J-Crate FEU → Ku-Band
 - c. J-Crate FEU ↔ S-Band
 - d. J-Crate FEU ↔ T0
 - e. DDRS-02 (playback) → Ku-Band
- 4. STS Interface Test (SIT) End-to-End; all the way to JSC POCC
 - Can be part of joint STS and AMS-02 Simulation (F)

STS FLIGHT

STS GSE or Ground Systems

MILA Functionality, and associated KSC support, is a KSC STS programmatic issue, without which this portion of the test is TBD.

AMS-02 P/L FLIGHT

AMS-02 GSE or Ground Systems

RF Link

Internet / LAN

Ku-Band Option 1:

End-to-end RF / STS Ku to MILA to TDRSS to WSTF to JSC POCC, complete test of Ch. 2 format & transmission Ku-Band Option 2:

Hardwire "short-cut" / STS Ku cap to C&T lab patch to split off Ku Ch.2 to DDRS-02 as well as bit sync.

S-Band Option A:

End-to-end RF / STS S-Band to MILA to TDRSS to WSTF to JSC POCC, complete test of format & transmission S-Band Option B:

Hardwire "short-cut" / STS S-band to C&T lab PSP/PDI patch to route NASCOM blocks to JSC / LRDL / FEP.

KSC Flow: Off-Line

- Arrive at Space Station Processing Facility (SSPF)
- Re-Assemble Lower USS to Upper USS
- Set-up and test CGSE and EGSE, including facility interfaces
- Top-off SFHe
- Power up/checkout Avionics and charge Cryomagnet (via Test Connector Panel / Interface Panel A)
- Integrate remainder of AMS-02 hardware
 - Handrails
 - PAS
 - Remove Test Connector Panel
 - Re-Route Integration Cables and Terminate at EVA Connector Panel

11

KSC Flow: On-Line

- Remove AMS-02 from Payload Support Structure (PSS)
- Transfer AMS-02 to ELC Rotation Stand
- Install Grapple Fixtures (PSS exclusion)

KSC Flow: On-Line (continued)

B. ISS Interface Verification Test (SSPF ELC)

With Integrated Payload – KSC PRCU Check-out

- Functional Interface Test (FIT)
 - EBCS Camera Alignment
 - PAS / UMA Functional Fits
 - ISS Data (PRCU) and Power (PEPSE) Testing (via UMA)
 - a. 1553 & HRDL to PRCU
 - b. To HOSC
 - c. To JSC POCC
 - Can be used to support joint SIMs (F)
- Power up / checkout avionics, no Magnet Charge

Return P/L to PSS and monitor until Canister Operations

Alpha Magnetic Spectrometer – 02 Payload Component Locations

Timothy. J. Urban / ESCG

Alpha Magnetic Spectrometer – 02 PAS, EBCS and UMA Locations

KSC Flow: On-Line (continued)

- Load into canister and transport to Canister Rotation Facility (CRF) will require On-Board Pump (SFHe), possibly data connections
- Rotate canister in CRF
- Transport to Pad for Vertical Installation in Payload Change-out Room (PCR) using Payload Ground Handling Mechanism (PGHM)
- In parallel with canister operations, the P/L CGSE (subset) will be transferred from the SSPF to the pad

KSC Flow: On-Line (continued)

- Mate STS ROEU ODA/PDA Interface
- Install P/L GSE vent lines
- STS Interface Verification Test (IVT)
- End-to-End P/L Tests in STS
- Remainder P/L CGSE connection
- Continued GSE payload servicing, including SFHe top-off
- Payload close-out and GSE disconnected
- Continued payload monitoring until 120 VDC power-off

Alpha Magnetic Spectrometer – 02 PAD Operations

KSC Flow: On-Line (continued)

D. STS Mated Interface Verification Test / Functional Test:

With Integrated Payload in Shuttle PLB at Pad: Check-out

- 1553 & RS422 command and monitor
- Fully functional check-out except magnet charge and thermal control systems (not possible in 1g)
- 3. Including DDRS-02 on AFD

KSC Flow: On-Line (continued)

E. PAD OPERATIONS

Installation at L-22 days through L-9 minutes:

- L-88 hours:
 - Complete Top-off SFHe
 - Disconnect and remove TRD Gas Bottle
 - Close SFHe Tank Vent Valve
 - Cap P/L Vent Lines
 - Activate/checkout AMS-02 avionics subsystems and thermally condition payload
 - Approximately 1000 ~ 1500 W for J-Crate, Cryo-valves, Cryo-coolers, CAB critical functions, and SFHe On-Board Pump
 - Maximum of 2 kW (peak) for calibration and contingency based upon thermal load in maximum flow / minimum temperature purged PLB
 - Thermal monitoring & considerations may drive subsystem power cycling
 - Payload GSE interface disconnect

KSC Flow: On-Line (continued)

E. PAD OPERATIONS (continued)

- L-80 hours PLB door close
- At L-30 minutes:
 - Deactivate On-Board Pump (110 VAC)
 - Power down Cryo-coolers
 - Power down all equipment with the exception of J-Crate and necessary CAB functions to monitor of cryogenics system health (limited to 120W)
- LCC: Monitor health status of cryogenic systems until L-9 min: GO / NO GO Call from AMS-02 based on Cryogenic System Health
- At L-9 minutes: 120 VDC Payload Power-Down
 - STS AFD Standard Switch Panel (SSP) provided 28 VDC is on

KSC Flow: On-Line (continued)

E. PAD OPERATIONS

- ⇒ No magnet charging possible on STS:
 - STS Flight APCU power supplied to prime PDS side "B" has no connectivity to the CAB
 - Magnet charging on Pad via T0 is operationally controlled
 - Monitored with positive feed-back until L-9 minutes
 - Multiple non-stored commands required to initiate

AMS-02 in PLB (CGSE access)

SFHe On-Board Pump

- Pre-Launch only
- T0 110 VAC interface and ground safety being worked with STS Program and KSC
- Rotating parts analysis complete

Pre-Launch Configuration Payload Data Interface Panel 2 (PDIP#2)

- Low rate data (1553) is routed through T0 umbilical to MLP GSE computers from Shuttle PDIP2 with the "AMS-02 1553" switch in the "T0" position, and program provided jumper installed on PDIP2 front panel "J4" connector
- High rate data (RS422) is routed through T0 umbilical to MLP GSE computers from Shuttle PDIP2 via payload provided cable installed between PDIP2 front panel "J103" and "J105" connectors.

Pre-Launch Standard Switch Panel Configuration

Digital Data Recorder System-02 (DDRS-02)

Will be used on Aft Flight Deck in STS end-to-end tests

Mission Abort

- In the event of a flight abort, P/L Baroswitch Electronics automatically closes vent valve when PLB pressure exceeds 15 – 20 millibars (mission success only)
- If possible, upon landing, services should be applied via the T0 Umbilical to perform the following:
 - Allow internal Electronics to Monitor SFHe tank pressure
 - Operate vent valve and on-board pump
 - Not a safety concern, but rather a refurbishment concern (don't want to rupture burst disks)
 - Initial projection from KSC for nominal landing indicates ~ 10 hrs.
- ⇒ Endurance & Mission Success for turn-around

Launch Scrub Turnaround Scenario

This scenario can be repeated up to 96 hours from first launch attempt (L₁)

Typically, a maximum of four launch attempts are made prior to re-servicing, so one day may be maintained At AMS Nominal Ops without attempting a launch.

Launch Scrub Recycle Turnaround Scenario

Hurricane Plan

Power down – safe without services.

- Including roll-back to VAB if necessary
- No safety requirements driving KSC reconnection endurance and mission success only

Mission assurance concerns at 96 hours.

Safety Launch Commit Criteria – 1 of 2

Loss of vacuum case seal immediately prior to launch possibly results in over-pressurization of the SFHe Tank during ascent, venting into and over-pressurizing the PLB and damaging the Aft Bulkhead

- Worst case leak in VC requires 23 minutes to generate sufficient He to burst disks, releasing gas into PLB
- For PLB over-pressurization to present a hazard to the Orbiter, the overpressurization must occur between L+30 seconds and L+1 minute
- Monitor Cryo-system health / status until L-9 minutes, ensuring insufficient time to release gas, thus preventing launch with hazard potential
 - Compared to trend data established over the lifetime of the experiment to indicate occurrence, and make the GO / NO GO Call
 - Minimum of three measurements of temperature and pressure within the SFHe Tank will provide this data on redundant paths

Safety Launch Commit Criteria – 2 of 2

Ensure MLP GSE Power Supplies are powered off, ensuring dead-faced T0 Connections

Payload Go / No Go Criteria

- The only payload mission success Go / No Go Criteria that has been defined relates to the operability of ISS Bus A prior to PLB door closure.
 - Because this bus is required for magnet charging, verification that this bus is operational must be made prior to launch.
 - EVA Connector Panel connections can be swapped to rectify lack of ISS Bus A prior to launch.

Backup Slides

Alpha Magnetic Spectrometer – 02 Payload Avionics Universal Interface Diagram

Alpha Magnetic Spectrometer – 02 Payload Interface Diagram – STS Pre-Launch

